Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Bioconjug Chem ; 35(2): 265-275, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38340041

RESUMO

Despite significant progress in cancer imaging and treatment over the years, early diagnosis and metastasis detection remain a challenge. Molecular magnetic resonance imaging (MRI), with its high resolution, can be well adapted to fulfill this need, requiring the design of contrast agents which target specific tumor biomarkers. Netrin-1 is an extracellular protein overexpressed in metastatic breast cancer and implicated in tumor progression and the appearance of metastasis. This study focuses on the design and preclinical evaluation of a novel Netrin-1-specific peptide-based MRI probe, GdDOTA-KKTHDAVR (Gd-K), to visualize metastatic breast cancer. The targeting peptide sequence was identified based on the X-ray structure of the complex between Netrin-1 and its transmembrane receptor DCC. Molecular docking simulations support the probe design. In vitro studies evidenced submicromolar affinity of Gd-K for Netrin-1 (KD = 0.29 µM) and good MRI efficacy (proton relaxivity, r1 = 4.75 mM-1 s-1 at 9.4 T, 37 °C). In vivo MRI studies in a murine model of triple-negative metastatic breast cancer revealed successful tumor visualization at earlier stages of tumor development (smaller tumor volume). Excellent signal enhancement, 120% at 2 min and 70% up to 35 min post injection, was achieved (0.2 mmol/kg injected dose), representing a reasonable imaging time window and a superior contrast enhancement in the tumor as compared to Dotarem injection.


Assuntos
Biomarcadores Tumorais , Neoplasias de Mama Triplo Negativas , Camundongos , Humanos , Animais , Sondas Moleculares , Netrina-1 , Simulação de Acoplamento Molecular , Meios de Contraste/química , Peptídeos , Imageamento por Ressonância Magnética/métodos
2.
Chem Commun (Camb) ; 59(86): 12883-12886, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37818645

RESUMO

We present the in vitro characterisation of a Gd3+-based contrast agent that responds to Zn2+ upon interaction with Human Serum Albumin. We show that the contradictory in vivo behaviour is related to Gd3+-accumulation in Zn-rich tissues. This highlights the importance of the biodistribution of such contrast agents.


Assuntos
Meios de Contraste , Zinco , Humanos , Distribuição Tecidual , Imageamento por Ressonância Magnética
3.
J Biomed Sci Eng ; 15(5): 140-156, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-36507464

RESUMO

Recent studies have demonstrated a new role for Klf10, a Krüppel-like transcription factor, in skeletal muscle, specifically relating to mitochondrial function. Thus, it was of interest to analyze additional tissues that are highly reliant on optimal mitochondrial function such as the cerebellum and to decipher the role of Klf10 in the functional and structural properties of this brain region. In vivo (magnetic resonance imaging and localized spectroscopy, behavior analysis) and in vitro (histology, spectroscopy analysis, enzymatic activity) techniques were applied to comprehensively assess the cerebellum of wild type (WT) and Klf10 knockout (KO) mice. Histology analysis and assessment of locomotion revealed no significant difference in Klf10 KO mice. Diffusion and texture results obtained using MRI revealed structural changes in KO mice characterized as defects in the organization of axons. These modifications may be explained by differences in the levels of specific metabolites (myo-inositol, lactate) within the KO cerebellum. Loss of Klf10 expression also led to changes in mitochondrial activity as reflected by a significant increase in the activity of citrate synthase, complexes I and IV. In summary, this study has provided evidence that Klf10 plays an important role in energy production and mitochondrial function in the cerebellum.

4.
J Am Chem Soc ; 144(48): 22212-22220, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36445192

RESUMO

As an essential metal ion and an efficient relaxation agent, Mn2+ holds a great promise to replace Gd3+ in magnetic resonance imaging (MRI) contrast agent applications, if its stable and inert complexation can be achieved. Toward this goal, four pyridine and one carboxylate pendants have been introduced in coordinating positions on the bispidine platform to yield ligand L3. Thanks to its rigid and preorganized structure and perfect size match for Mn2+, L3 provides remarkably high thermodynamic stability (log KMnL = 19.47), selectivity over the major biological competitor Zn2+ (log(KMnL/KZnL) = 4.4), and kinetic inertness. Solid-state X-ray data show that [MnL3(MeOH)](OTf)2 has an unusual eight-coordinate structure with a coordinated solvent molecule, in contrast to the six-coordinate structure of [ZnL3](OTf), underlining that the coordination cavity is perfectly adapted for Mn2+, while it is too large for Zn2+. In aqueous solution, 17O NMR data evidence one inner sphere water and dissociatively activated water exchange (kex298 = 13.5 × 107 s-1) for MnL3. Its water proton relaxivity (r1 = 4.44 mM-1 s-1 at 25 °C, 20 MHz) is about 30% higher than values for typical monohydrated Mn2+ complexes, which is related to its larger molecular size; its relaxation efficiency is similar to that of clinically used Gd3+-based agents. In vivo MRI experiments realized in control mice at 0.02 mmol/kg injected dose indicate good signal enhancement in the kidneys and fast renal clearance. Taken together, MnL3 is the first chelate that combines such excellent stability, selectivity, inertness and relaxation properties, all of primary importance for MRI use.


Assuntos
Imageamento por Ressonância Magnética , Água , Animais , Camundongos , Termodinâmica
5.
Angew Chem Int Ed Engl ; 60(44): 23574-23577, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34387934

RESUMO

Drug-loaded liposomes are typical examples of nanomedicines. We show here that doxorubicin, the anti-cancer agent in the liposomal drug Doxil, can sensitize Ytterbium (Yb3+ ) and generate its near-infrared (NIR) emission. When doxorubicin and amphiphilic Yb3+ chelates are incorporated into liposomes, the sensitized emission of Yb3+ is dependent on the integrity of the particles, which can be used to monitor drug release. We also established the first demonstration that the NIR Yb3+ emission signal is observable in living mice following intratumoral injection of the Yb3+ -doxorubicin-liposomes, using a commercial macroscopic setup equipped with a NIR camera.


Assuntos
Antibióticos Antineoplásicos/química , Neoplasias da Mama/diagnóstico por imagem , Doxorrubicina/análogos & derivados , Luminescência , Itérbio/química , Animais , Linhagem Celular Tumoral , Doxorrubicina/química , Liberação Controlada de Fármacos , Feminino , Raios Infravermelhos , Lipossomos/química , Imageamento por Ressonância Magnética , Camundongos , Estrutura Molecular , Polietilenoglicóis/química
6.
Neuroimage ; 230: 117776, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33516895

RESUMO

Reproduction induces changes within the brain to prepare for gestation and motherhood. However, the dynamic of these central changes and their relationships with the development of maternal behavior remain poorly understood. Here, we describe a longitudinal morphometric neuroimaging study in female mice between pre-gestation and weaning, using new magnetic resonance imaging (MRI) resources comprising a high-resolution brain template, its associated tissue priors (60-µm isotropic resolution) and a corresponding mouse brain atlas (1320 regions of interest). Using these tools, we observed transient hypertrophies not only within key regions controlling gestation and maternal behavior (medial preoptic area, bed nucleus of the stria terminalis), but also in the amygdala, caudate nucleus and hippocampus. Additionally, unlike females exhibiting lower levels of maternal care, highly maternal females developed transient hypertrophies in somatosensory, entorhinal and retrosplenial cortices among other regions. Therefore, coordinated and transient brain modifications associated with maternal performance occurred during gestation and lactation.


Assuntos
Atlas como Assunto , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Lactação/fisiologia , Comportamento Materno/fisiologia , Gravidez/fisiologia , Animais , Feminino , Lactação/psicologia , Estudos Longitudinais , Masculino , Comportamento Materno/psicologia , Camundongos , Gravidez/psicologia
7.
J Med Chem ; 63(11): 6057-6065, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32372648

RESUMO

Toxicity concerns related to Gd(III)-based magnetic resonance imaging (MRI) agents prompted an intensive research toward their replacement by complexes of essential metal ions, like Mn(II). Here, we report a macrocyclic chelate, [Mn(PC2A-BP)], which possesses high thermodynamic stability (log KMnL = 14.86 and pMn=8.35) and kinetic inertness (t1/2pH=7.4 = 286.2 h) as well as as remarkable relaxivity (r1p = 23.5 mM-1 s-1, 0.49 T, 37 °C) in the presence of human serum albumin, allowing a significant MRI signal intensity increase in the vasculature even at low dose (25 µmol/kg) of the complex.


Assuntos
Meios de Contraste/química , Imageamento por Ressonância Magnética/métodos , Manganês/química , Complexos de Coordenação/química , Estabilidade de Medicamentos , Humanos , Cinética , Ligantes , Albumina Sérica/química , Termodinâmica
8.
Angew Chem Int Ed Engl ; 59(29): 11958-11963, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32298021

RESUMO

The search for more biocompatible alternatives to Gd3+ -based MRI agents, and the interest in 52 Mn for PET imaging call for ligands that form inert Mn2+ chelates. Given the labile nature of Mn2+ , high inertness is challenging to achieve. The strongly preorganized structure of the 2,4-pyridyl-disubstituted bispidol ligand L1 endows its Mn2+ complex with exceptional kinetic inertness. Indeed, MnL1 did not show any dissociation for 140 days in the presence of 50 equiv. of Zn2+ (37 °C, pH 6), while recently reported potential MRI agents MnPyC3A and MnPC2A-EA have dissociation half-lives of 0.285 h and 54.4 h under similar conditions. In addition, the relaxivity of MnL1 (4.28 mm-1 s-1 at 25 °C, 20 MHz) is remarkable for a monohydrated, small Mn2+ chelate. In vivo MRI experiments in mice and determination of the tissue Mn content evidence rapid renal clearance of MnL1 . Additionally, L1 could be radiolabeled with 52 Mn and the complex revealed good stability in biological media.

9.
Materials (Basel) ; 13(3)2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31978954

RESUMO

Gold nanoparticles (AuNPs) are interesting for the design of new cancer theranostic tools, mainly due to their biocompatibility, easy molecular vectorization, and good biological half-life. Herein, we report a gold nanoparticle platform as a bimodal imaging probe, capable of coordinating Gd3+ for Magnetic Resonance Imaging (MRI) and 67Ga3+ for Single Photon Emission Computed Tomography (SPECT) imaging. Our AuNPs carry a bombesin analogue with affinity towards the gastrin releasing peptide receptor (GRPr), overexpressed in a variety of human cancer cells, namely PC3 prostate cancer cells. The potential of these multimodal imaging nanoconstructs was thoroughly investigated by the assessment of their magnetic properties, in vitro cellular uptake, biodistribution, and radiosensitisation assays. The relaxometric properties predict a potential T1- and T2- MRI application. The promising in vitro cellular uptake of 67Ga/Gd-based bombesin containing particles was confirmed through biodistribution studies in tumor bearing mice, indicating their integrity and ability to target the GRPr. Radiosensitization studies revealed the therapeutic potential of the nanoparticles. Moreover, the DOTA chelating unit moiety versatility gives a high theranostic potential through the coordination of other therapeutically interesting radiometals. Altogether, our nanoparticles are interesting nanomaterial for theranostic application and as bimodal T1- and T2- MRI / SPECT imaging probes.

10.
Inorg Chem ; 59(2): 1306-1314, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31909995

RESUMO

In this study, an original aza-BODIPY system comprising two Gd3+ complexes has been designed and synthesized for magnetic resonance imaging/optical imaging applications, by functionalization of the boron center. This strategy enabled the obtainment of a positively charged bimodal probe, which displays an increased water solubility, optimized photophysical properties in the near-infrared region, and very promising relaxometric properties. The absorption and emission wavelengths are 705 and 741 nm, respectively, with a quantum yield of around 10% in aqueous media. Moreover, the system does not produce singlet oxygen upon excitation, which would be toxic for tissues. The relaxivity obtained is high at intermediate fields (16.1 mM-1 s-1 at 20 MHz and 310 K) and competes with that of bigger or more rigid systems. A full relaxometric and 17O NMR study and fitting of the data using the Lipari-Szabo approach showed that this high relaxivity can be explained by the size of the system and the presence of some small aggregates. These optimized photophysical and relaxometric properties highlight the potential use of such systems for future bimodal imaging studies.

11.
Acta Physiol (Oxf) ; 228(3): e13394, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31560161

RESUMO

AIM: Tieg1 is involved in multiple signalling pathways, human diseases, and is highly expressed in muscle where its functions are poorly understood. METHODS: We have utilized Tieg1 knockout (KO) mice to identify novel and important roles for this transcription factor in regulating muscle ultrastructure, metabolism and mitochondrial functions in the soleus and extensor digitorum longus (EDL) muscles. RNA sequencing, immunoblotting, transmission electron microscopy, MRI, NMR, histochemical and mitochondrial function assays were performed. RESULTS: Loss of Tieg1 expression resulted in altered sarcomere organization and a significant decrease in mitochondrial number. Histochemical analyses demonstrated an absence of succinate dehydrogenase staining and a decrease in cytochrome c oxidase (COX) enzyme activity in KO soleus with similar, but diminished, effects in the EDL. Decreased complex I, COX and citrate synthase (CS) activities were detected in the soleus muscle of KO mice indicating altered mitochondrial function. Complex I activity was also diminished in KO EDL. Significant decreases in CS and respiratory chain complex activities were identified in KO soleus. 1 H-NMR spectra revealed no significant metabolic difference between wild-type and KO muscles. However, 31 P spectra revealed a significant decrease in phosphocreatine and ATPγ. Altered expression of 279 genes, many of which play roles in mitochondrial and muscle function, were identified in KO soleus muscle. Ultimately, all of these changes resulted in an exercise intolerance phenotype in Tieg1 KO mice. CONCLUSION: Our findings have implicated novel roles for Tieg1 in muscle including regulation of gene expression, metabolic activity and organization of tissue ultrastructure. This muscle phenotype resembles diseases associated with exercise intolerance and myopathies of unknown consequence.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Músculos/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Metaboloma , Camundongos , Camundongos Knockout , Estresse Oxidativo/fisiologia , Condicionamento Físico Animal/fisiologia , Succinato Desidrogenase/metabolismo , Fatores de Transcrição/genética
12.
Invest Radiol ; 55(2): 120-128, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31876627

RESUMO

OBJECTIVES: The aim of this study was to determine potential metabolism and histological modifications due to gadolinium retention within deep cerebellar nuclei (DCN) after linear gadolinium-based contrast agent injection (gadodiamide) in rats at 1 year after the last injection. MATERIALS AND METHODS: Twenty female rats received 20 doses of gadodiamide (0.6 mmol of gadolinium per kilogram each) over 5 weeks. They were followed at 1 week (M0), 6 weeks (M1), and 54 to 55 weeks (M13) postinjections to evaluate hypersignal on unenhanced T1-weighted magnetic resonance imaging and metabolic alterations by H magnetic resonance spectroscopy (H-MRS). At 1 year postinjections, brains were sampled to determine the localization of gadolinium within cerebellum by laser ablation inductively coupled mass spectroscopy and to evaluate morphological changes by semiquantitative immunofluorescence analysis. RESULTS: There is a significant increase of the ratio DCN/brainstem for the gadodiamide group at M0 (+7.2% vs control group = 0.989 ± 0.01), M1 (+7.6% vs control group = 1.002 ± 0.018), and it lasted up to M13 (+4.7% vs control group = 0.9862 ± 0.008). No variation among metabolic markers (cellular homeostasis [creatine, choline, taurine], excitatory neurotransmitter [glutamate], and metabolites specific to a cellular compartment [N-acetyl aspartate for neurons and myo-inositol for glial cells]) were detected by H-MRS between gadodiamide and saline groups at M0, M1, and M13. At M13, laser ablation inductively coupled mass spectroscopy demonstrated that long-term gadolinium retention occurred preferentially in DCN. No histological abnormalities (including analysis of astrocytes, neurons, and microglial cells) were found in the rostral part of DCN. CONCLUSIONS: Repeated administration of gadodiamide lead to a retention of gadolinium preferentially within DCN at 1 year postinjections. This retention did not lead to any detectable changes of the measured metabolic biomarkers nor histological alterations.


Assuntos
Núcleos Cerebelares/efeitos dos fármacos , Núcleos Cerebelares/metabolismo , Meios de Contraste/farmacocinética , Gadolínio DTPA/farmacocinética , Animais , Núcleos Cerebelares/diagnóstico por imagem , Meios de Contraste/administração & dosagem , Feminino , Gadolínio DTPA/administração & dosagem , Espectroscopia de Ressonância Magnética/métodos , Modelos Animais , Ratos , Ratos Sprague-Dawley , Tempo
13.
Sci Rep ; 9(1): 7733, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-31118478

RESUMO

At present, there is a lack of well-validated protocols that allow for the analysis of the mechanical properties of muscle and tendon tissues. Further, there are no reports regarding characterization of mouse skeletal muscle and tendon mechanical properties in vivo using elastography thereby limiting the ability to monitor changes in these tissues during disease progression or response to therapy. Therefore, we sought to develop novel protocols for the characterization of mechanical properties in musculotendinous tissues using atomic force microscopy (AFM) and ultrasound elastography. Given that TIEG1 knockout (KO) mice exhibit well characterized defects in the mechanical properties of skeletal muscle and tendon tissue, we have chosen to use this model system in the present study. Using TIEG1 knockout and wild-type mice, we have devised an AFM protocol that does not rely on the use of glue or chemical agents for muscle and tendon fiber immobilization during acquisition of transversal cartographies of elasticity and topography. Additionally, since AFM cannot be employed on live animals, we have also developed an ultrasound elastography protocol using a new linear transducer, SLH20-6 (resolution: 38 µm, footprint: 2.38 cm), to characterize the musculotendinous system in vivo. This protocol allows for the identification of changes in muscle and tendon elasticities. Such innovative technological approaches have no equivalent to date, promise to accelerate our understanding of musculotendinous mechanical properties and have numerous research and clinical applications.


Assuntos
Técnicas de Imagem por Elasticidade/métodos , Microscopia de Força Atômica/métodos , Músculo Esquelético/fisiologia , Tendões/fisiologia , Tendão do Calcâneo/fisiologia , Tendão do Calcâneo/ultraestrutura , Animais , Proteínas de Ligação a DNA/deficiência , Módulo de Elasticidade , Feminino , Imageamento por Ressonância Magnética , Camundongos , Camundongos Knockout , Microscopia Eletrônica , Fibras Musculares Esqueléticas/fisiologia , Fibras Musculares Esqueléticas/ultraestrutura , Músculo Esquelético/ultraestrutura , Sarcômeros/fisiologia , Sarcômeros/ultraestrutura , Tendões/ultraestrutura , Fatores de Transcrição/deficiência
14.
Front Immunol ; 9: 1476, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29988569

RESUMO

Idiopathic pulmonary fibrosis is a progressive, devastating, and yet untreatable fibrotic disease of unknown origin. Interleukin-33 (IL-33), an IL-1 family member acts as an alarmin with pro-inflammatory properties when released after stress or cell death. Here, we investigated the role of IL-33 in the bleomycin (BLM)-induced inflammation and fibrosis model using mice IL-33 receptor [chain suppression of tumorigenicity 2 (ST2)] mice compared with C57BL/6 wild-type mice. Unexpectedly, 24 h post-BLM treatment ST2-deficient mice displayed augmented inflammatory cell recruitment, in particular by neutrophils, together with enhanced levels of chemokines and remodeling factors in the bronchoalveolar space and/or the lungs. At 11 days, lung remodeling and fibrosis were decreased with reduced M2 macrophages in the lung associated with M2-like cytokine profile in ST2-deficient mice, while lung cellular inflammation was decreased but with fluid retention (edema) increased. In vivo magnetic resonance imaging (MRI) analysis demonstrates a rapid development of edema detectable at day 7, which was increased in the absence of ST2. Our results demonstrate that acute neutrophilic pulmonary inflammation leads to the development of an IL-33/ST2-dependent lung fibrosis associated with the production of M2-like polarization. In addition, non-invasive MRI revealed enhanced inflammation with lung edema during the development of pulmonary inflammation and fibrosis in absence of ST2.

15.
MAGMA ; 31(4): 565-576, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29464462

RESUMO

OBJECTIVE: Using non-invasive magnetic resonance (MR) techniques and a histological approach, we assessed the outcomes of perinatal exposure at a low dose of 3,3'-DCBPA (2-chloro-4-[1-(3-chloro-4-hydroxyphenyl)-1-methylethyl]phenol) and/or 3,5-DCBPA (2,6-dichloro-4-[1-(4-hydroxyphenyl)-1-methylethyl]phenol) on mice livers. MATERIALS AND METHODS: Fertilized female Swiss mice were injected intraperitoneally during gestation and lactation with either vehicle control, 20 µg/kg/day of BPA, 3,5-DCBPA, 3,3'-DCBPA or a mixture (mix-DCBPA). Complementary methods were used to evaluate, in male and female pups, (1) liver structure by texture analysis of images obtained through MR imaging (MRI) and histology, (2) hepatic lipid composition through in vivo 1H MR spectroscopy (1H MRS). RESULTS: Principal component analysis of texture parameters showed no structural modification of the liver with BPA and DCBPA treatments. Accordingly, no hepatic microvesicular steatosis was observed through hematoxylin-eosin staining. Compared to control, MRS revealed no difference in lipid composition for BPA, 3,5-DCBPA or 3,3'-DCBPA groups. However, MRS detected a significant increase in the mix-DCBPA groups for the saturated component of fatty acids (FA), total unsaturated FA bond index and polyunsaturated FA bond index. CONCLUSION: Prior to any structural changes, polyunsaturated fatty acids significantly increased in young male and female mice exposed perinatally at a low dose to a mixture of dichlorinated BPA.


Assuntos
Compostos Benzidrílicos/toxicidade , Lipídeos/análise , Fígado/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Exposição Materna , Fenóis/toxicidade , Animais , Peso Corporal , Ácidos Graxos , Fígado Gorduroso , Feminino , Lactação , Fígado/diagnóstico por imagem , Fígado/patologia , Imageamento por Ressonância Magnética , Masculino , Camundongos , Gravidez
16.
J Nanobiotechnology ; 16(1): 18, 2018 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-29466990

RESUMO

BACKGROUND: Recent advances in nanomedicine have shown the great interest of active targeting associated to nanoparticles. Single chain variable fragments (scFv) of disease-specific antibodies are very promising targeting entities because they are small, not immunogenic and able to bind their specific antigens. The present paper is devoted to biological properties in vitro and in vivo of fluorescent and pegylated iron oxide nanoparticles (SPIONs-Cy-PEG-scFv) functionalized with scFv targeting Human Epithelial growth Receptor 2 (HER2). RESULTS: Thanks to a site-selective scFv conjugation, the resultant nanoprobes demonstrated high affinity and specific binding to HER2 breast cancer cells. The cellular uptake of SPIONs-Cy-PEG-scFv was threefold higher than that for untargeted PEGylated iron oxide nanoparticles (SPIONs-Cy-PEG) and is correlated to the expression of HER2 on cells. In vivo, the decrease of MR signals in HER2+ xenograft tumor is about 30% at 24 h after the injection. CONCLUSIONS: These results all indicate that SPIONs-Cy-PEG-scFv are relevant tumor-targeting magnetic resonance imaging agents, suitable for diagnosis of HER2 overexpressing breast tumor.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Compostos Férricos/química , Corantes Fluorescentes/química , Nanopartículas/química , Polietilenoglicóis/química , Receptor ErbB-2/análise , Anticorpos de Cadeia Única/química , Animais , Linhagem Celular Tumoral , Meios de Contraste/química , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Camundongos Nus
17.
PLoS Pathog ; 13(4): e1006322, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28448579

RESUMO

Cerebral malaria (CM) is associated with a high mortality rate and long-term neurocognitive impairment in survivors. The murine model of experimental cerebral malaria (ECM) induced by Plasmodium berghei ANKA (PbA)-infection reproduces several of these features. We reported recently increased levels of IL-33 protein in brain undergoing ECM and the involvement of IL-33/ST2 pathway in ECM development. Here we show that PbA-infection induced early short term and spatial memory defects, prior to blood brain barrier (BBB) disruption, in wild-type mice, while ST2-deficient mice did not develop cognitive defects. PbA-induced neuroinflammation was reduced in ST2-deficient mice with low Ifng, Tnfa, Il1b, Il6, CXCL9, CXCL10 and Cd8a expression, associated with an absence of neurogenesis defects in hippocampus. PbA-infection triggered a dramatic increase of IL-33 expression by oligodendrocytes, through ST2 pathway. In vitro, IL-33/ST2 pathway induced microglia expression of IL-1ß which in turn stimulated IL-33 expression by oligodendrocytes. These results highlight the IL-33/ST2 pathway ability to orchestrate microglia and oligodendrocytes responses at an early stage of PbA-infection, with an amplification loop between IL-1ß and IL-33, responsible for an exacerbated neuroinflammation context and associated neurological and cognitive defects.


Assuntos
Encéfalo/metabolismo , Disfunção Cognitiva/metabolismo , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Interleucina-33/metabolismo , Malária Cerebral/complicações , Plasmodium berghei/fisiologia , Animais , Encéfalo/parasitologia , Encéfalo/fisiopatologia , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/genética , Disfunção Cognitiva/parasitologia , Feminino , Humanos , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-33/genética , Malária Cerebral/genética , Malária Cerebral/metabolismo , Malária Cerebral/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Plasmodium berghei/genética
18.
Muscle Nerve ; 55(3): 410-416, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27421714

RESUMO

INTRODUCTION: Transforming growth factor-beta (TGF-ß)-inducible early gene-1 (TIEG1) is a transcription factor that is highly expressed in skeletal muscle. The purpose of this study was to characterize the structural properties of both fast-twitch (EDL) and slow-twitch (soleus) muscles in the hindlimb of TIEG1-deficient (TIEG1-/- ) mice. METHODS: Ten slow and 10 fast muscles were analyzed from TIEG1-/- and wild-type (WT) mice using MRI texture (MRI-TA) and histological analyses. RESULTS: MRI-TA could discriminate between WT slow and fast muscles. Deletion of the TIEG1 gene led to changes in the texture profile within both muscle types. Specifically, muscle isolated from TIEG1-/- mice displayed hypertrophy, hyperplasia, and a modification of fiber area distribution. CONCLUSIONS: We demonstrated that TIEG1 plays an important role in the structural properties of skeletal muscle. This study further implicates important roles for TIEG1 in the development of skeletal muscle and suggests that defects in TIEG1 expression and/or function may be associated with muscle disease. Muscle Nerve 55: 410-416, 2017.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Fibras Musculares de Contração Rápida/fisiologia , Fibras Musculares de Contração Lenta/fisiologia , Fatores de Transcrição/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Feminino , Membro Posterior/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Análise de Componente Principal , RNA Mensageiro/metabolismo , Fatores de Transcrição/genética
19.
Arch Toxicol ; 90(7): 1719-27, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27136897

RESUMO

Phosphinotricin (L-PPT) is the active compound of a broad-spectrum herbicide. Acute poisoning with L-PPT has various clinical manifestations, including seizures and convulsions. However, the exact mechanism of L-PPT toxicity remains unclear. The present study addressed the role of L-PPT, in the excitability of striatal medium-sized spiny neurons (MSNs). In whole-cell current-clamp experiments, L-PPT increased the input resistance (Ri), decreased the rheobase and increased the firing frequency of action potentials. In voltage-clamp experiments, L-PPT inhibited the inward-rectifying potassium (Kir) currents. Finally, the effects of L-PPT mimicked the inhibition of Kir channels with Ba(2+) on neuronal excitability. Altogether, these results suggest that the herbicide L-PPT is a modulator of Kir channels in MSNs. Thereby, Kir channels are potent regulators of the excitability of MSNs and reduced open probability of these channels would generate a powerful upregulation of neuronal output. This effect may represent a possible mechanism for L-PPT dependent neuronal toxicity.


Assuntos
Aminobutiratos/toxicidade , Corpo Estriado/efeitos dos fármacos , Herbicidas/toxicidade , Potenciais da Membrana/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Animais , Corpo Estriado/enzimologia , Corpo Estriado/metabolismo , Relação Dose-Resposta a Droga , Feminino , Glutamato-Amônia Ligase/antagonistas & inibidores , Técnicas In Vitro , Masculino , Camundongos Endogâmicos C57BL , Neurônios/enzimologia , Neurônios/metabolismo , Técnicas de Patch-Clamp
20.
Anal Chem ; 87(22): 11233-41, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26488315

RESUMO

Novel magneto-plasmonic nanoprobes were designed for multimodal diagnosis of cancer by combination of magnetic resonance imaging (MRI), surface-enhanced resonance Raman scattering (SERRS), and fluorescence emission in the very near infrared (VNIR). A controlled electrostatic assembly of silver nanoparticles (AgNPs), superparamagnetic iron oxide nanoparticles (SPIONs), VNIR dye Nile Blue (NB), and biopolymer chitosan (Chi) was used to formulate the AgIONs-Chi nanoprobes. The formulation protocol did not involve organic solvents and was rapid and efficient as confirmed by magnetic sorting. The SERRS response of the nanoprobes was very intense and constant for days. It decreased linearly upon 1000-fold dilution and was still recognizable at 0.1 nM NB concentration. After 30 days of storage, the SERRS loss was less than 30% and the hydrodynamic size of the AgIONs-Chi in PBS remained below 200 nm. The gradual decrease of the ratio SERRS/fluorescence allowed one to monitor the release of the fluorescent molecule upon long-term nanoprobe dissociation. The AgIONs-Chi exhibited 2-fold higher MRI contrast than that of commercially available SPION suspensions. Finally, the nanoprobes were actively uptaken by HeLa cancer cells and ensured trimodal MRI-SERRS-fluorescence detection of 10 µL cell inclusions in cm-sized agarose gels used here as phantom models of microtumors. The above results show that the magneto-plasmonic AgIONs-Chi are promising substrates for SERRS analysis in solution and for multimodal imaging of cancer cells.


Assuntos
Separação Celular/métodos , Fluorescência , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita/química , Neoplasias/patologia , Análise de Célula Única , Células HeLa , Humanos , Campos Magnéticos , Tamanho da Partícula , Análise Espectral Raman , Propriedades de Superfície , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...